Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Python Machine Learning By Example
  • Table Of Contents Toc
  • Feedback & Rating feedback
Python Machine Learning By Example

Python Machine Learning By Example - Second Edition

By : Yuxi (Hayden) Liu
5 (2)
close
close
Python Machine Learning By Example

Python Machine Learning By Example

5 (2)
By: Yuxi (Hayden) Liu

Overview of this book

The surge in interest in machine learning (ML) is due to the fact that it revolutionizes automation by learning patterns in data and using them to make predictions and decisions. If you’re interested in ML, this book will serve as your entry point to ML. Python Machine Learning By Example begins with an introduction to important ML concepts and implementations using Python libraries. Each chapter of the book walks you through an industry adopted application. You’ll implement ML techniques in areas such as exploratory data analysis, feature engineering, and natural language processing (NLP) in a clear and easy-to-follow way. With the help of this extended and updated edition, you’ll understand how to tackle data-driven problems and implement your solutions with the powerful yet simple Python language and popular Python packages and tools such as TensorFlow, scikit-learn, gensim, and Keras. To aid your understanding of popular ML algorithms, the book covers interesting and easy-to-follow examples such as news topic modeling and classification, spam email detection, stock price forecasting, and more. By the end of the book, you’ll have put together a broad picture of the ML ecosystem and will be well-versed with the best practices of applying ML techniques to make the most out of new opportunities.
Table of Contents (15 chapters)
close
close
Lock Free Chapter
1
Section 1: Fundamentals of Machine Learning
3
Section 2: Practical Python Machine Learning By Example
12
Section 3: Python Machine Learning Best Practices

Learning without guidance – unsupervised learning

In the previous chapter, we apply t-SNE to visualize the newsgroup text data in reduced 2 dimensions. T-SNE, or dimensionality reduction in general, is a type of unsupervised learning. Instead of having a teacher educating what particular output to produce, be it a class or membership (classification), be it a continuous value (regression), unsupervised learning identifies inherent structures or commonalities in the input data. Since there is no guidance in unsupervised learning, there is no clear answer on what is a right or wrong result. Unsupervised learning has the freedom to discover hidden information underneath input data.

An easy way to understand unsupervised learning is to think of going through many practice questions for an exam. In supervised learning, you are given answers to those practice questions. You basically...

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Python Machine Learning By Example
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon