Book Image

Python Machine Learning By Example - Second Edition

By : Yuxi (Hayden) Liu
Book Image

Python Machine Learning By Example - Second Edition

By: Yuxi (Hayden) Liu

Overview of this book

The surge in interest in machine learning (ML) is due to the fact that it revolutionizes automation by learning patterns in data and using them to make predictions and decisions. If you’re interested in ML, this book will serve as your entry point to ML. Python Machine Learning By Example begins with an introduction to important ML concepts and implementations using Python libraries. Each chapter of the book walks you through an industry adopted application. You’ll implement ML techniques in areas such as exploratory data analysis, feature engineering, and natural language processing (NLP) in a clear and easy-to-follow way. With the help of this extended and updated edition, you’ll understand how to tackle data-driven problems and implement your solutions with the powerful yet simple Python language and popular Python packages and tools such as TensorFlow, scikit-learn, gensim, and Keras. To aid your understanding of popular ML algorithms, the book covers interesting and easy-to-follow examples such as news topic modeling and classification, spam email detection, stock price forecasting, and more. By the end of the book, you’ll have put together a broad picture of the ML ecosystem and will be well-versed with the best practices of applying ML techniques to make the most out of new opportunities.
Table of Contents (15 chapters)
Free Chapter
1
Section 1: Fundamentals of Machine Learning
3
Section 2: Practical Python Machine Learning By Example
12
Section 3: Python Machine Learning Best Practices

Clustering newsgroups data using k-means

The newsgroups data comes with labels, the categories of the newsgroups, and a number of categories that are closely related or even overlapping, for instance, the five computer groups: comp.graphics, comp.os.ms-windows.misc, comp.sys.ibm.pc.hardware, comp.sys.mac.hardware, and comp.windows.x, and the two religion-related ones, alt.atheism and talk.religion.misc.

Assuming those labels do not exist, will samples from related topics be clustered together? We, herein, resort to the k-means clustering algorithm.

How does k-means clustering work?

The goal of the k-means algorithm is to partition the data into k groups based on feature similarities. K is a predefined property of a k-means...