Book Image

Data Wrangling with Python

By : Dr. Tirthajyoti Sarkar, Shubhadeep Roychowdhury
Book Image

Data Wrangling with Python

By: Dr. Tirthajyoti Sarkar, Shubhadeep Roychowdhury

Overview of this book

For data to be useful and meaningful, it must be curated and refined. Data Wrangling with Python teaches you the core ideas behind these processes and equips you with knowledge of the most popular tools and techniques in the domain. The book starts with the absolute basics of Python, focusing mainly on data structures. It then delves into the fundamental tools of data wrangling like NumPy and Pandas libraries. You'll explore useful insights into why you should stay away from traditional ways of data cleaning, as done in other languages, and take advantage of the specialized pre-built routines in Python. This combination of Python tips and tricks will also demonstrate how to use the same Python backend and extract/transform data from an array of sources including the Internet, large database vaults, and Excel financial tables. To help you prepare for more challenging scenarios, you'll cover how to handle missing or wrong data, and reformat it based on the requirements from the downstream analytics tool. The book will further help you grasp concepts through real-world examples and datasets. By the end of this book, you will be confident in using a diverse array of sources to extract, clean, transform, and format your data efficiently.
Table of Contents (12 chapters)
Data Wrangling with Python
Preface
Appendix

Statistics and Visualization with NumPy and Pandas


One of the great advantages of using libraries such as NumPy and pandas is that a plethora of built-in statistical and visualization methods are available, for which we don't have to search for and write new code. Furthermore, most of these subroutines are written using C or Fortran code (and pre-compiled), making them extremely fast to execute.

Refresher of Basic Descriptive Statistics (and the Matplotlib Library for Visualization)

For any data wrangling task, it is quite useful to extract basic descriptive statistics from the data and create some simple visualizations/plots. These plots are often the first step in identifying fundamental patterns as well as oddities (if present) in the data. In any statistical analysis, descriptive statistics is the first step, followed by inferential statistics, which tries to infer the underlying distribution or process from which the data might have been generated.

As the inferential statistics are intimately...