Book Image

Data Wrangling with Python

By : Dr. Tirthajyoti Sarkar, Shubhadeep Roychowdhury
Book Image

Data Wrangling with Python

By: Dr. Tirthajyoti Sarkar, Shubhadeep Roychowdhury

Overview of this book

For data to be useful and meaningful, it must be curated and refined. Data Wrangling with Python teaches you the core ideas behind these processes and equips you with knowledge of the most popular tools and techniques in the domain. The book starts with the absolute basics of Python, focusing mainly on data structures. It then delves into the fundamental tools of data wrangling like NumPy and Pandas libraries. You'll explore useful insights into why you should stay away from traditional ways of data cleaning, as done in other languages, and take advantage of the specialized pre-built routines in Python. This combination of Python tips and tricks will also demonstrate how to use the same Python backend and extract/transform data from an array of sources including the Internet, large database vaults, and Excel financial tables. To help you prepare for more challenging scenarios, you'll cover how to handle missing or wrong data, and reformat it based on the requirements from the downstream analytics tool. The book will further help you grasp concepts through real-world examples and datasets. By the end of this book, you will be confident in using a diverse array of sources to extract, clean, transform, and format your data efficiently.
Table of Contents (12 chapters)
Data Wrangling with Python
Preface
Appendix

Introduction


In this chapter, we will learn about the secret sauce behind creating a successful data wrangling pipeline. In the previous chapters, we were introduced to the basic data structures and building blocks of Data Wrangling, such as pandas and NumPy. In this chapter, we will look at the data handling section of data wrangling.

Imagine that you have a database of patients who have heart diseases, and like any survey, the data is either missing, incorrect, or has outliers. Outliers are values that are abnormal and tend to be far away from the central tendency, and thus including it into your fancy machine learning model may introduce a terrible bias that we need to avoid. Often, these problems can cause a huge difference in terms of money, man-hours, and other organizational resources. It is undeniable that someone with the skills to solve these problems will prove to be an asset to an organization.

Additional Software Required for This Section

The code for this exercise depends on...