Book Image

Data Wrangling with Python

By : Dr. Tirthajyoti Sarkar, Shubhadeep Roychowdhury
Book Image

Data Wrangling with Python

By: Dr. Tirthajyoti Sarkar, Shubhadeep Roychowdhury

Overview of this book

For data to be useful and meaningful, it must be curated and refined. Data Wrangling with Python teaches you the core ideas behind these processes and equips you with knowledge of the most popular tools and techniques in the domain. The book starts with the absolute basics of Python, focusing mainly on data structures. It then delves into the fundamental tools of data wrangling like NumPy and Pandas libraries. You'll explore useful insights into why you should stay away from traditional ways of data cleaning, as done in other languages, and take advantage of the specialized pre-built routines in Python. This combination of Python tips and tricks will also demonstrate how to use the same Python backend and extract/transform data from an array of sources including the Internet, large database vaults, and Excel financial tables. To help you prepare for more challenging scenarios, you'll cover how to handle missing or wrong data, and reformat it based on the requirements from the downstream analytics tool. The book will further help you grasp concepts through real-world examples and datasets. By the end of this book, you will be confident in using a diverse array of sources to extract, clean, transform, and format your data efficiently.
Table of Contents (12 chapters)
Data Wrangling with Python
Preface
Appendix

Chapter 9. Application of Data Wrangling in Real Life

Note

Learning Objectives

By the end of this chapter, you will be able to:

  • Perform data wrangling on multiple full-fledged datasets from renowned sources

  • Create a unified dataset that can be passed on to a data science team for machine learning and predictive analytics

  • Relate data wrangling to version control, containerization, cloud services for data analytics, and big data technologies such as Apache Spark and Hadoop

Note

In this chapter, you will apply your gathered knowledge on real-life datasets and investigate various aspects of it.