Book Image

Data Wrangling with Python

By : Dr. Tirthajyoti Sarkar, Shubhadeep Roychowdhury
Book Image

Data Wrangling with Python

By: Dr. Tirthajyoti Sarkar, Shubhadeep Roychowdhury

Overview of this book

For data to be useful and meaningful, it must be curated and refined. Data Wrangling with Python teaches you the core ideas behind these processes and equips you with knowledge of the most popular tools and techniques in the domain. The book starts with the absolute basics of Python, focusing mainly on data structures. It then delves into the fundamental tools of data wrangling like NumPy and Pandas libraries. You'll explore useful insights into why you should stay away from traditional ways of data cleaning, as done in other languages, and take advantage of the specialized pre-built routines in Python. This combination of Python tips and tricks will also demonstrate how to use the same Python backend and extract/transform data from an array of sources including the Internet, large database vaults, and Excel financial tables. To help you prepare for more challenging scenarios, you'll cover how to handle missing or wrong data, and reformat it based on the requirements from the downstream analytics tool. The book will further help you grasp concepts through real-world examples and datasets. By the end of this book, you will be confident in using a diverse array of sources to extract, clean, transform, and format your data efficiently.
Table of Contents (12 chapters)
Data Wrangling with Python
Preface
Appendix

An Extension to Data Wrangling


This is the concluding chapter of our book, where we want to give you a broad overview of some of the exciting technologies and frameworks that you may need to learn beyond data wrangling to work as a full-stack data scientist. Data wrangling is an essential part of the whole data science and analytics pipeline, but it is not the whole enterprise. You have learned invaluable skills and techniques in this book, but it is always good to broaden your horizons and look beyond to see what other tools that are out there can give you an edge in this competitive and ever-changing world.

Additional Skills Required to Become a Data Scientist

To practice as a fully qualified data scientist/analyst, you should have some basic skills in your repertoire, irrespective of the particular programming language you choose to focus on. These skills and know-hows are language agnostic and can be utilized with any framework that you have to embrace, depending on your organization and...