Book Image

Hands-On Natural Language Processing with PyTorch 1.x

By : Thomas Dop
Book Image

Hands-On Natural Language Processing with PyTorch 1.x

By: Thomas Dop

Overview of this book

In the internet age, where an increasing volume of text data is generated daily from social media and other platforms, being able to make sense of that data is a crucial skill. With this book, you’ll learn how to extract valuable insights from text by building deep learning models for natural language processing (NLP) tasks. Starting by understanding how to install PyTorch and using CUDA to accelerate the processing speed, you’ll explore how the NLP architecture works with the help of practical examples. This PyTorch NLP book will guide you through core concepts such as word embeddings, CBOW, and tokenization in PyTorch. You’ll then learn techniques for processing textual data and see how deep learning can be used for NLP tasks. The book demonstrates how to implement deep learning and neural network architectures to build models that will allow you to classify and translate text and perform sentiment analysis. Finally, you’ll learn how to build advanced NLP models, such as conversational chatbots. By the end of this book, you’ll not only have understood the different NLP problems that can be solved using deep learning with PyTorch, but also be able to build models to solve them.
Table of Contents (14 chapters)
1
Section 1: Essentials of PyTorch 1.x for NLP
7
Section 3: Real-World NLP Applications Using PyTorch 1.x

Chapter 5: Recurrent Neural Networks and Sentiment Analysis

In this chapter, we will look at Recurrent Neural Networks (RNNs), a variation of the basic feed forward neural networks in PyTorch that we learned how to build in Chapter 1, Fundamentals of Machine Learning. Generally, RNNs can be used for any task where data can be represented as a sequence. This includes things such as stock price prediction, using a time series of historic data represented as a sequence. We commonly use RNNs in NLP as text can be thought of as a sequence of individual words and can be modeled as such. While a conventional neural network takes a single vector as input to the model, an RNN can take a whole sequence of vectors. If we represent each word in a document as a vector embedding, we can represent a whole document as a sequence of vectors (or an order 3 tensor). We can then use RNNs (and a more sophisticated form of RNN known as Long Short-Term Memory (LSTM) to learn from our data.

In this chapter...