Book Image

Hands-On Artificial Intelligence for Cybersecurity

By : Alessandro Parisi
Book Image

Hands-On Artificial Intelligence for Cybersecurity

By: Alessandro Parisi

Overview of this book

Today's organizations spend billions of dollars globally on cybersecurity. Artificial intelligence has emerged as a great solution for building smarter and safer security systems that allow you to predict and detect suspicious network activity, such as phishing or unauthorized intrusions. This cybersecurity book presents and demonstrates popular and successful AI approaches and models that you can adapt to detect potential attacks and protect your corporate systems. You'll learn about the role of machine learning and neural networks, as well as deep learning in cybersecurity, and you'll also learn how you can infuse AI capabilities into building smart defensive mechanisms. As you advance, you'll be able to apply these strategies across a variety of applications, including spam filters, network intrusion detection, botnet detection, and secure authentication. By the end of this book, you'll be ready to develop intelligent systems that can detect unusual and suspicious patterns and attacks, thereby developing strong network security defenses using AI.
Table of Contents (16 chapters)
Free Chapter
1
Section 1: AI Core Concepts and Tools of the Trade
4
Section 2: Detecting Cybersecurity Threats with AI
8
Section 3: Protecting Sensitive Information and Assets
12
Section 4: Evaluating and Testing Your AI Arsenal

Evading ML detectors

In Chapter 8, GANs Attacks and Defenses, we showed how to use Generative Adversarial Networks (GANs) to deceive detection algorithms. Now, we will see that, it is not only GANs that pose a threat to our AI-based cybersecurity solutions, but more generally, it is possible to exploit Reinforcement Learning (RL) to render our detection tools ineffective.

To understand how, we need to briefly introduce the fundamental concepts of RL.

Understanding RL

Compared to the various forms of AI, RL is characterized by implementing a trial and error fashion of automated learning. In fact, the RL algorithms adapt their learning processes based on the feedback obtained from the environment. This feedback can...