Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Data Science Algorithms in a Week
  • Table Of Contents Toc
  • Feedback & Rating feedback
Data Science Algorithms in a Week

Data Science Algorithms in a Week - Second Edition

By : Natingga, David Toth
3.7 (3)
close
close
Data Science Algorithms in a Week

Data Science Algorithms in a Week

3.7 (3)
By: Natingga, David Toth

Overview of this book

Machine learning applications are highly automated and self-modifying, and continue to improve over time with minimal human intervention, as they learn from the trained data. To address the complex nature of various real-world data problems, specialized machine learning algorithms have been developed. Through algorithmic and statistical analysis, these models can be leveraged to gain new knowledge from existing data as well. Data Science Algorithms in a Week addresses all problems related to accurate and efficient data classification and prediction. Over the course of seven days, you will be introduced to seven algorithms, along with exercises that will help you understand different aspects of machine learning. You will see how to pre-cluster your data to optimize and classify it for large datasets. This book also guides you in predicting data based on existing trends in your dataset. This book covers algorithms such as k-nearest neighbors, Naive Bayes, decision trees, random forest, k-means, regression, and time-series analysis. By the end of this book, you will understand how to choose machine learning algorithms for clustering, classification, and regression and know which is best suited for your problem
Table of Contents (12 chapters)
close
close
10
Glossary of Algorithms and Methods in Data Science

Household incomes – clustering into k clusters


For example, let's look at households whose annual earnings in USD are $40,000, $55,000, $70,000, $100,000, $115,000, $130,000 and $135,000. Then, if we were to combine those households into two clusters, taking their earnings as a measure of similarity, the first cluster would have those households earning 40 k, 55 k, and 70 k, while the second cluster would include those households earning 100 k, 115 k, 130 k, and 135 k.

This is because 40k and 135k are furthest away from each other so, because we want to have two clusters, these have to be in different clusters. 55 K is closer to 40 k than to 135 k, so 40 k and 55 k will be in the same cluster. Similarly, 130 k and 135 k will be in the same cluster. 70 K is closer to 40 k and 55 k than to 130 K and 135 k, so 70 k should be in the cluster with 40 k and 55 k. 115 K is closer to 130 k and 135 k than to the first cluster containing 40 k, 55 k, and 70 k, so it will be in the second cluster. Finally...

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Data Science Algorithms in a Week
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon