Book Image

R Machine Learning Projects

By : Dr. Sunil Kumar Chinnamgari
Book Image

R Machine Learning Projects

By: Dr. Sunil Kumar Chinnamgari

Overview of this book

R is one of the most popular languages when it comes to performing computational statistics (statistical computing) easily and exploring the mathematical side of machine learning. With this book, you will leverage the R ecosystem to build efficient machine learning applications that carry out intelligent tasks within your organization. This book will help you test your knowledge and skills, guiding you on how to build easily through to complex machine learning projects. You will first learn how to build powerful machine learning models with ensembles to predict employee attrition. Next, you’ll implement a joke recommendation engine and learn how to perform sentiment analysis on Amazon reviews. You’ll also explore different clustering techniques to segment customers using wholesale data. In addition to this, the book will get you acquainted with credit card fraud detection using autoencoders, and reinforcement learning to make predictions and win on a casino slot machine. By the end of the book, you will be equipped to confidently perform complex tasks to build research and commercial projects for automated operations.
Table of Contents (12 chapters)
10
The Road Ahead

Backpropagation through time

We are already aware that RNNs are cyclical graphs, unlike feedforward networks, which are acyclic directional graphs. In feedforward networks, the error derivatives are calculated from the layer above. However, in an RNN we don't have such layering to perform error derivative calculations. A simple solution to this problem is to unroll the RNN and make it similar to a feedforward network. To enable this, the hidden units from the RNN are replicated at each time step. Each time step replication forms a layer that is similar to layers in a feedforward network. Each time step t layer connects to all possible layers in the time step t+1. Therefore, we randomly initialize the weights, unroll the network, and then use backpropagation to optimize the weights in the hidden layer. The lowest layer is initialized by passing parameters. These parameters...