In this chapter, we discussed how hierarchical clustering works and where it may be best employed. In particular, we discussed various aspects of how clusters can be subjectively chosen through the evaluation of a dendrogram plot. This is a huge advantage compared to k-means clustering if you have absolutely no idea of what you're looking for in the data. Two key parameters that drive the success of hierarchical clustering were also discussed: the agglomerative versus divisive approach and linkage criteria. Agglomerative clustering takes a bottom-up approach by recursively grouping nearby data together until it results in one large cluster. Divisive clustering takes a top-down approach by starting with the one large cluster and recursively breaking it down until each data point falls into its own cluster. Divisive clustering has the potential to be more accurate since it has a complete view of the data from the start; however, it adds a layer of complexity that can decrease the stability...

#### Applied Unsupervised Learning with Python

##### By :

#### Applied Unsupervised Learning with Python

##### By:

#### Overview of this book

Unsupervised learning is a useful and practical solution in situations where labeled data is not available.
Applied Unsupervised Learning with Python guides you in learning the best practices for using unsupervised learning techniques in tandem with Python libraries and extracting meaningful information from unstructured data. The book begins by explaining how basic clustering works to find similar data points in a set. Once you are well-versed with the k-means algorithm and how it operates, you’ll learn what dimensionality reduction is and where to apply it. As you progress, you’ll learn various neural network techniques and how they can improve your model. While studying the applications of unsupervised learning, you will also understand how to mine topics that are trending on Twitter and Facebook and build a news recommendation engine for users. Finally, you will be able to put your knowledge to work through interesting activities such as performing a Market Basket Analysis and identifying relationships between different products.
By the end of this book, you will have the skills you need to confidently build your own models using Python.

Table of Contents (12 chapters)

Applied Unsupervised Learning with Python

Preface

Free Chapter

Introduction to Clustering

Hierarchical Clustering

Neighborhood Approaches and DBSCAN

Dimension Reduction and PCA

Autoencoders

t-Distributed Stochastic Neighbor Embedding (t-SNE)

Topic Modeling

Market Basket Analysis

Hotspot Analysis

Appendix

Customer Reviews