Book Image

Python Data Analysis - Third Edition

By : Avinash Navlani, Ivan Idris
5 (1)
Book Image

Python Data Analysis - Third Edition

5 (1)
By: Avinash Navlani, Ivan Idris

Overview of this book

Data analysis enables you to generate value from small and big data by discovering new patterns and trends, and Python is one of the most popular tools for analyzing a wide variety of data. With this book, you’ll get up and running using Python for data analysis by exploring the different phases and methodologies used in data analysis and learning how to use modern libraries from the Python ecosystem to create efficient data pipelines. Starting with the essential statistical and data analysis fundamentals using Python, you’ll perform complex data analysis and modeling, data manipulation, data cleaning, and data visualization using easy-to-follow examples. You’ll then understand how to conduct time series analysis and signal processing using ARMA models. As you advance, you’ll get to grips with smart processing and data analytics using machine learning algorithms such as regression, classification, Principal Component Analysis (PCA), and clustering. In the concluding chapters, you’ll work on real-world examples to analyze textual and image data using natural language processing (NLP) and image analytics techniques, respectively. Finally, the book will demonstrate parallel computing using Dask. By the end of this data analysis book, you’ll be equipped with the skills you need to prepare data for analysis and create meaningful data visualizations for forecasting values from data.
Table of Contents (20 chapters)
1
Section 1: Foundation for Data Analysis
6
Section 2: Exploratory Data Analysis and Data Cleaning
11
Section 3: Deep Dive into Machine Learning
15
Section 4: NLP, Image Analytics, and Parallel Computing

Unsupervised learning

Unsupervised learning means learning by observation, not by example. This type of learning works with unlabeled data. Dimensionality reduction and clustering are examples of such learning. Dimensionality reduction is used to reduce a large number of attributes to just a few that can produce the same results. There are several methods that are available for reducing the dimensionality of data, such as principal component analysis (PCA), t-SNE, wavelet transformation, and attribute subset selection.

The term cluster means a group of similar items that are closely related to each other. Clustering is an approach for generating units or groups of items that are similar to each other. This similarity is computed based on certain features or characteristics of items. We can say that a cluster is a set of data points that are similar to others in its cluster and dissimilar to data points of other clusters. Clustering has numerous applications, such as in searching documents...