Book Image

Python Data Analysis - Third Edition

By : Avinash Navlani, Ivan Idris
5 (1)
Book Image

Python Data Analysis - Third Edition

5 (1)
By: Avinash Navlani, Ivan Idris

Overview of this book

Data analysis enables you to generate value from small and big data by discovering new patterns and trends, and Python is one of the most popular tools for analyzing a wide variety of data. With this book, you’ll get up and running using Python for data analysis by exploring the different phases and methodologies used in data analysis and learning how to use modern libraries from the Python ecosystem to create efficient data pipelines. Starting with the essential statistical and data analysis fundamentals using Python, you’ll perform complex data analysis and modeling, data manipulation, data cleaning, and data visualization using easy-to-follow examples. You’ll then understand how to conduct time series analysis and signal processing using ARMA models. As you advance, you’ll get to grips with smart processing and data analytics using machine learning algorithms such as regression, classification, Principal Component Analysis (PCA), and clustering. In the concluding chapters, you’ll work on real-world examples to analyze textual and image data using natural language processing (NLP) and image analytics techniques, respectively. Finally, the book will demonstrate parallel computing using Dask. By the end of this data analysis book, you’ll be equipped with the skills you need to prepare data for analysis and create meaningful data visualizations for forecasting values from data.
Table of Contents (20 chapters)
Section 1: Foundation for Data Analysis
Section 2: Exploratory Data Analysis and Data Cleaning
Section 3: Deep Dive into Machine Learning
Section 4: NLP, Image Analytics, and Parallel Computing
Cleaning Messy Data

Data analysts and scientists spend most of their time cleaning data and pre-processing messy datasets. While this activity is less talked about, it is one of the most performed activities and one of the most important skills for any data professional. Mastering the skill of data cleaning is necessary for any aspiring data scientist. Data cleaning and pre-processing is the process of identifying, updating, and removing corrupt or incorrect data. Cleaning and pre-processing results in high-quality data for robust and error-free analysis. Quality data can beat complex algorithms and outperform simple and less complex algorithms. In this context, high quality means accurate, complete, and consistent data. Data cleaning is a set of activities such as handling missing values, removing outliers, feature encoding, scaling, transformation, and splitting.

This chapter...