Book Image

Python Machine Learning - Third Edition

By : Sebastian Raschka, Vahid Mirjalili
5 (2)
Book Image

Python Machine Learning - Third Edition

5 (2)
By: Sebastian Raschka, Vahid Mirjalili

Overview of this book

Python Machine Learning, Third Edition is a comprehensive guide to machine learning and deep learning with Python. It acts as both a step-by-step tutorial, and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and working examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, Raschka and Mirjalili teach the principles behind machine learning, allowing you to build models and applications for yourself. Updated for TensorFlow 2.0, this new third edition introduces readers to its new Keras API features, as well as the latest additions to scikit-learn. It's also expanded to cover cutting-edge reinforcement learning techniques based on deep learning, as well as an introduction to GANs. Finally, this book also explores a subfield of natural language processing (NLP) called sentiment analysis, helping you learn how to use machine learning algorithms to classify documents. This book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.
Table of Contents (21 chapters)
20
Index

Summary

In this chapter, you first learned about the properties of sequences that make them different to other types of data, such as structured data or images. We then covered the foundations of RNNs for sequence modeling. You learned how a basic RNN model works and discussed its limitations with regard to capturing long-term dependencies in sequence data. Next, we covered LSTM cells, which consist of a gating mechanism to reduce the effect of exploding and vanishing gradient problems, which are common in basic RNN models.

After discussing the main concepts behind RNNs, we implemented several RNN models with different recurrent layers using the Keras API. In particular, we implemented an RNN model for sentiment analysis, as well as an RNN model for generating text. Finally, we covered the Transformer model, which leverages the self-attention mechanism in order to focus on the relevant parts of a sequence.

In the next chapter, you will learn about generative models and, in particular...