Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Python Machine Learning
  • Table Of Contents Toc
Python Machine Learning

Python Machine Learning - Third Edition

By : Sebastian Raschka, Vahid Mirjalili
4.5 (40)
close
close
Python Machine Learning

Python Machine Learning

4.5 (40)
By: Sebastian Raschka, Vahid Mirjalili

Overview of this book

Python Machine Learning, Third Edition is a comprehensive guide to machine learning and deep learning with Python. It acts as both a step-by-step tutorial, and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and working examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, Raschka and Mirjalili teach the principles behind machine learning, allowing you to build models and applications for yourself. Updated for TensorFlow 2.0, this new third edition introduces readers to its new Keras API features, as well as the latest additions to scikit-learn. It's also expanded to cover cutting-edge reinforcement learning techniques based on deep learning, as well as an introduction to GANs. Finally, this book also explores a subfield of natural language processing (NLP) called sentiment analysis, helping you learn how to use machine learning algorithms to classify documents. This book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.
Table of Contents (21 chapters)
close
close
20
Index

Implementing our first RL algorithm

In this section, we will cover the implementation of the Q-learning algorithm to solve the grid world problem. To do this, we use the OpenAI Gym toolkit.

Introducing the OpenAI Gym toolkit

OpenAI Gym is a specialized toolkit for facilitating the development of RL models. OpenAI Gym comes with several predefined environments. Some basic examples are CartPole and MountainCar, where the tasks are to balance a pole and to move a car up a hill, respectively, as the names suggest. There are also many advanced robotics environments for training a robot to fetch, push, and reach for items on a bench or training a robotic hand to orient blocks, balls, or pens. Moreover, OpenAI Gym provides a convenient, unified framework for developing new environments. More information can be found on its official website: https://gym.openai.com/.

To follow the OpenAI Gym code examples in the next sections, you need to install the gym library, which can be easily...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Python Machine Learning
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon