Book Image

Python Machine Learning - Third Edition

By : Sebastian Raschka, Vahid Mirjalili
5 (1)
Book Image

Python Machine Learning - Third Edition

5 (1)
By: Sebastian Raschka, Vahid Mirjalili

Overview of this book

Python Machine Learning, Third Edition is a comprehensive guide to machine learning and deep learning with Python. It acts as both a step-by-step tutorial, and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and working examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, Raschka and Mirjalili teach the principles behind machine learning, allowing you to build models and applications for yourself. Updated for TensorFlow 2.0, this new third edition introduces readers to its new Keras API features, as well as the latest additions to scikit-learn. It's also expanded to cover cutting-edge reinforcement learning techniques based on deep learning, as well as an introduction to GANs. Finally, this book also explores a subfield of natural language processing (NLP) called sentiment analysis, helping you learn how to use machine learning algorithms to classify documents. This book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.
Table of Contents (21 chapters)
20
Index

Chapter and book summary

In this chapter, we covered the essential concepts in RL, starting from the very foundations, and how RL can support decision making in complex environments.

We learned about agent-environment interactions and Markov decision processes (MDP), and we considered three main approaches for solving RL problems: dynamic programming, MC learning, and TD learning. We discussed that the dynamic programming algorithm assumes that the full knowledge of environment dynamics is available, an assumption that is not typically true for most real-world problems.

Then, we saw how the MC- and TD-based algorithms learn by allowing an agent to interact with the environment and generate a simulated experience. After discussing the underlying theory, we implemented the Q-learning algorithm as an off-policy subcategory of the TD algorithm for solving the grid world example. Finally, we covered the concept of function approximation and deep Q-learning in particular, which can...