Book Image

Python Machine Learning - Third Edition

By : Sebastian Raschka, Vahid Mirjalili
5 (1)
Book Image

Python Machine Learning - Third Edition

5 (1)
By: Sebastian Raschka, Vahid Mirjalili

Overview of this book

Python Machine Learning, Third Edition is a comprehensive guide to machine learning and deep learning with Python. It acts as both a step-by-step tutorial, and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and working examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, Raschka and Mirjalili teach the principles behind machine learning, allowing you to build models and applications for yourself. Updated for TensorFlow 2.0, this new third edition introduces readers to its new Keras API features, as well as the latest additions to scikit-learn. It's also expanded to cover cutting-edge reinforcement learning techniques based on deep learning, as well as an introduction to GANs. Finally, this book also explores a subfield of natural language processing (NLP) called sentiment analysis, helping you learn how to use machine learning algorithms to classify documents. This book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.
Table of Contents (21 chapters)
20
Index

Implementing a perceptron learning algorithm in Python

In the previous section, we learned how Rosenblatt's perceptron rule works; let's now implement it in Python and apply it to the Iris dataset that we introduced in Chapter 1, Giving Computers the Ability to Learn from Data.

An object-oriented perceptron API

We will take an object-oriented approach to defining the perceptron interface as a Python class, which will allow us to initialize new Perceptron objects that can learn from data via a fit method, and make predictions via a separate predict method. As a convention, we append an underscore (_) to attributes that are not created upon the initialization of the object, but we do this by calling the object's other methods, for example, self.w_.

Additional resources for Python's scientific computing stack

If you are not yet familiar with Python's scientific libraries or need a refresher, please see the following resources:

    ...