Book Image

Python Machine Learning - Third Edition

By : Sebastian Raschka, Vahid Mirjalili
Book Image

Python Machine Learning - Third Edition

By: Sebastian Raschka, Vahid Mirjalili

Overview of this book

Python Machine Learning, Third Edition is a comprehensive guide to machine learning and deep learning with Python. It acts as both a step-by-step tutorial, and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and working examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, Raschka and Mirjalili teach the principles behind machine learning, allowing you to build models and applications for yourself. Updated for TensorFlow 2.0, this new third edition introduces readers to its new Keras API features, as well as the latest additions to scikit-learn. It's also expanded to cover cutting-edge reinforcement learning techniques based on deep learning, as well as an introduction to GANs. Finally, this book also explores a subfield of natural language processing (NLP) called sentiment analysis, helping you learn how to use machine learning algorithms to classify documents. This book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.
Table of Contents (21 chapters)

What you need for this book

The execution of the code examples provided in this book requires an installation of Python 3.7.0 or newer on macOS, Linux, or Microsoft Windows. We will make frequent use of Python's essential libraries for scientific computing throughout this book, including SciPy, NumPy, scikit-learn, Matplotlib, and pandas.

The first chapter will provide you with instructions and useful tips to set up your Python environment and these core libraries. We will add additional libraries to our repertoire, and installation instructions are provided in the respective chapters, for example, the NLTK library for natural language processing in Chapter 8, Applying Machine Learning to Sentiment Analysis, the Flask web framework in Chapter 9, Embedding a Machine Learning Model into a Web Application, and TensorFlow for efficient NN training on GPUs in Chapter 13 to Chapter 18.