Book Image

Hands-On Python Deep Learning for the Web

By : Anubhav Singh, Sayak Paul
Book Image

Hands-On Python Deep Learning for the Web

By: Anubhav Singh, Sayak Paul

Overview of this book

When used effectively, deep learning techniques can help you develop intelligent web apps. In this book, you'll cover the latest tools and technological practices that are being used to implement deep learning in web development using Python. Starting with the fundamentals of machine learning, you'll focus on DL and the basics of neural networks, including common variants such as convolutional neural networks (CNNs). You'll learn how to integrate them into websites with the frontends of different standard web tech stacks. The book then helps you gain practical experience of developing a deep learning-enabled web app using Python libraries such as Django and Flask by creating RESTful APIs for custom models. Later, you'll explore how to set up a cloud environment for deep learning-based web deployments on Google Cloud and Amazon Web Services (AWS). Next, you'll learn how to use Microsoft's intelligent Emotion API, which can detect a person's emotions through a picture of their face. You'll also get to grips with deploying real-world websites, in addition to learning how to secure websites using reCAPTCHA and Cloudflare. Finally, you'll use NLP to integrate a voice UX through Dialogflow on your web pages. By the end of this book, you'll have learned how to deploy intelligent web apps and websites with the help of effective tools and practices.
Table of Contents (19 chapters)
1
Artificial Intelligence on the Web
3
Using Deep Learning for Web Development
7
Getting Started with Different Deep Learning APIs for Web Development
12
Deep Learning in Production (Intelligent Web Apps)
Appendix: Success Stories and Emerging Areas in Deep Learning on the Web

How not to build an AI backend

Considering the vastness that web applications can grow to and the strong dependence of nearly every other platform on a backend that runs as a web-based service, it is important for the backend to be well thought of and properly executed. AI-based applications, even in a PoC stage, are often not blazingly fast in responding or take a lot of time to train on the new samples.

While we will be discussing tips and tricks to make a backend that does not choke under pressure due to bottlenecks, we need to lay down a few pointers that need to be avoided in the best possible way when developing an AI-integrated backend for a website.

Expecting the AI part of the website to be real time

AI is computationally...