Book Image

Advanced Deep Learning with Python

By : Ivan Vasilev
Book Image

Advanced Deep Learning with Python

By: Ivan Vasilev

Overview of this book

In order to build robust deep learning systems, you’ll need to understand everything from how neural networks work to training CNN models. In this book, you’ll discover newly developed deep learning models, methodologies used in the domain, and their implementation based on areas of application. You’ll start by understanding the building blocks and the math behind neural networks, and then move on to CNNs and their advanced applications in computer vision. You'll also learn to apply the most popular CNN architectures in object detection and image segmentation. Further on, you’ll focus on variational autoencoders and GANs. You’ll then use neural networks to extract sophisticated vector representations of words, before going on to cover various types of recurrent networks, such as LSTM and GRU. You’ll even explore the attention mechanism to process sequential data without the help of recurrent neural networks (RNNs). Later, you’ll use graph neural networks for processing structured data, along with covering meta-learning, which allows you to train neural networks with fewer training samples. Finally, you’ll understand how to apply deep learning to autonomous vehicles. By the end of this book, you’ll have mastered key deep learning concepts and the different applications of deep learning models in the real world.
Table of Contents (17 chapters)
Free Chapter
1
Section 1: Core Concepts
3
Section 2: Computer Vision
8
Section 3: Natural Language and Sequence Processing
12
Section 4: A Look to the Future

Transformer language models

In Chapter 6, Language Modeling, we introduced several different language models (word2vec, GloVe, and fastText) that use the context of a word (its surrounding words) to create word vectors (embeddings). These models share some common properties:

  • They are context-free (I know it contradicts the previous statement) because they create a single global word vector of each word based on all its occurrences in the training text. For example, lead can have completely different meanings in the phrases lead the way and lead atom, yet the model will try to embed both meanings in the same word vector.
  • They are position-free because they don't take into account the order of the contextual words when training for the embedding vectors.

In contrast, it's possible to create transformer-based language models, which are both context- and position-dependent...