Book Image

Applied Unsupervised Learning with R

By : Alok Malik, Bradford Tuckfield
Book Image

Applied Unsupervised Learning with R

By: Alok Malik, Bradford Tuckfield

Overview of this book

Starting with the basics, Applied Unsupervised Learning with R explains clustering methods, distribution analysis, data encoders, and features of R that enable you to understand your data better and get answers to your most pressing business questions. This book begins with the most important and commonly used method for unsupervised learning - clustering - and explains the three main clustering algorithms - k-means, divisive, and agglomerative. Following this, you'll study market basket analysis, kernel density estimation, principal component analysis, and anomaly detection. You'll be introduced to these methods using code written in R, with further instructions on how to work with, edit, and improve R code. To help you gain a practical understanding, the book also features useful tips on applying these methods to real business problems, including market segmentation and fraud detection. By working through interesting activities, you'll explore data encoders and latent variable models. By the end of this book, you will have a better understanding of different anomaly detection methods, such as outlier detection, Mahalanobis distances, and contextual and collective anomaly detection.
Table of Contents (9 chapters)

Chapter 4. Dimension Reduction

Note

Learning Objectives

By the end of this chapter, you will be able to:

  • Apply different dimension reduction techniques

  • Execute market basket analysis using the Apriori algorithm

  • Perform principal component analysis on a dataset

Note

In this chapter, we will have a look at different dimension reduction techniques.