Book Image

The Reinforcement Learning Workshop

By : Alessandro Palmas, Emanuele Ghelfi, Dr. Alexandra Galina Petre, Mayur Kulkarni, Anand N.S., Quan Nguyen, Aritra Sen, Anthony So, Saikat Basak
Book Image

The Reinforcement Learning Workshop

By: Alessandro Palmas, Emanuele Ghelfi, Dr. Alexandra Galina Petre, Mayur Kulkarni, Anand N.S., Quan Nguyen, Aritra Sen, Anthony So, Saikat Basak

Overview of this book

Various intelligent applications such as video games, inventory management software, warehouse robots, and translation tools use reinforcement learning (RL) to make decisions and perform actions that maximize the probability of the desired outcome. This book will help you to get to grips with the techniques and the algorithms for implementing RL in your machine learning models. Starting with an introduction to RL, youÔÇÖll be guided through different RL environments and frameworks. YouÔÇÖll learn how to implement your own custom environments and use OpenAI baselines to run RL algorithms. Once youÔÇÖve explored classic RL techniques such as Dynamic Programming, Monte Carlo, and TD Learning, youÔÇÖll understand when to apply the different deep learning methods in RL and advance to deep Q-learning. The book will even help you understand the different stages of machine-based problem-solving by using DARQN on a popular video game Breakout. Finally, youÔÇÖll find out when to use a policy-based method to tackle an RL problem. By the end of The Reinforcement Learning Workshop, youÔÇÖll be equipped with the knowledge and skills needed to solve challenging problems using reinforcement learning.
Table of Contents (14 chapters)
Preface
Free Chapter
2
2. Markov Decision Processes and Bellman Equations

Introduction

In the previous chapter, you were introduced to TensorFlow and Keras, along with an overview of their key features and applications and how they work in synergy. You learned how to implement a deep neural network with TensorFlow, addressing all major topics, that is, model creation, training, validation, and testing, using the most advanced machine learning frameworks available. In this chapter, we will use this knowledge to build models that are able to solve some classical reinforcement learning problems.

Reinforcement learning is a branch of machine learning that comes closest to the idea of artificial intelligence. The goal of training an artificial system to learn a given task, without any prior information, and only by means of experiences of an environment, represents the ambitious aim of replicating human learning. Applying deep learning techniques to the field has recently led to a great increase in performance, thus allowing us to solve problems in very different...