Book Image

Hands-On Vision and Behavior for Self-Driving Cars

By : Luca Venturi, Krishtof Korda
Book Image

Hands-On Vision and Behavior for Self-Driving Cars

By: Luca Venturi, Krishtof Korda

Overview of this book

The visual perception capabilities of a self-driving car are powered by computer vision. The work relating to self-driving cars can be broadly classified into three components - robotics, computer vision, and machine learning. This book provides existing computer vision engineers and developers with the unique opportunity to be associated with this booming field. You will learn about computer vision, deep learning, and depth perception applied to driverless cars. The book provides a structured and thorough introduction, as making a real self-driving car is a huge cross-functional effort. As you progress, you will cover relevant cases with working code, before going on to understand how to use OpenCV, TensorFlow and Keras to analyze video streaming from car cameras. Later, you will learn how to interpret and make the most of lidars (light detection and ranging) to identify obstacles and localize your position. You’ll even be able to tackle core challenges in self-driving cars such as finding lanes, detecting pedestrian and crossing lights, performing semantic segmentation, and writing a PID controller. By the end of this book, you’ll be equipped with the skills you need to write code for a self-driving car running in a driverless car simulator, and be able to tackle various challenges faced by autonomous car engineers.
Table of Contents (17 chapters)
1
Section 1: OpenCV and Sensors and Signals
5
Section 2: Improving How the Self-Driving Car Works with Deep Learning and Neural Networks
12
Section 3: Mapping and Controls

Working with image files

OpenCV provides a very simple way to load images, using imread():

import cv2
image = cv2.imread('test.jpg')

To show the image, you can use imshow(), which accepts two parameters:

  • The name to write on the caption of the window that will show the image
  • The image to be shown

Unfortunately, its behavior is counterintuitive, as it will not show an image unless it is followed by a call to waitKey():

cv2.imshow("Image", image)cv2.waitKey(0)

The call to waitKey() after imshow() will have two effects:

  • It will actually allow OpenCV to show the image provided to imshow().
  • It will wait for the specified amount of milliseconds, or until a key is pressed if the amount of milliseconds passed is <=0. It will wait indefinitely.

An image can be saved on disk using the imwrite() method, which accepts three parameters:

  • The name of the file
  • The image
  • An optional format-dependent parameter:
  • ...