Book Image

Hands-On Vision and Behavior for Self-Driving Cars

By : Luca Venturi, Krishtof Korda
Book Image

Hands-On Vision and Behavior for Self-Driving Cars

By: Luca Venturi, Krishtof Korda

Overview of this book

The visual perception capabilities of a self-driving car are powered by computer vision. The work relating to self-driving cars can be broadly classified into three components - robotics, computer vision, and machine learning. This book provides existing computer vision engineers and developers with the unique opportunity to be associated with this booming field. You will learn about computer vision, deep learning, and depth perception applied to driverless cars. The book provides a structured and thorough introduction, as making a real self-driving car is a huge cross-functional effort. As you progress, you will cover relevant cases with working code, before going on to understand how to use OpenCV, TensorFlow and Keras to analyze video streaming from car cameras. Later, you will learn how to interpret and make the most of lidars (light detection and ranging) to identify obstacles and localize your position. You’ll even be able to tackle core challenges in self-driving cars such as finding lanes, detecting pedestrian and crossing lights, performing semantic segmentation, and writing a PID controller. By the end of this book, you’ll be equipped with the skills you need to write code for a self-driving car running in a driverless car simulator, and be able to tackle various challenges faced by autonomous car engineers.
Table of Contents (17 chapters)
1
Section 1: OpenCV and Sensors and Signals
5
Section 2: Improving How the Self-Driving Car Works with Deep Learning and Neural Networks
12
Section 3: Mapping and Controls

Camera calibration with OpenCV

In this section, you will learn how to take objects with a known pattern and use them to correct lens distortion using OpenCV.

Remember the lens distortion we talked about in the previous section? You need to correct this to ensure you accurately locate where objects are relative to your vehicle. It does you no good to see an object if you don't know whether it is in front of you or next to you. Even good lenses can distort the image, and this is particularly true for wide-angle lenses. Luckily, OpenCV provides a mechanism to detect this distortion and correct it!

The idea is to take pictures of a chessboard, so OpenCV can use this high-contrast pattern to detect the position of the points and compute the distortion based on the difference between the expected image and the recorded one.

You need to provide several pictures at different orientations. It might take some experiments to find a good set of pictures, but 10 to 20 images should...