Book Image

Interpretable Machine Learning with Python

By : Serg Masís
Book Image

Interpretable Machine Learning with Python

By: Serg Masís

Overview of this book

Do you want to gain a deeper understanding of your models and better mitigate poor prediction risks associated with machine learning interpretation? If so, then Interpretable Machine Learning with Python deserves a place on your bookshelf. We’ll be starting off with the fundamentals of interpretability, its relevance in business, and exploring its key aspects and challenges. As you progress through the chapters, you'll then focus on how white-box models work, compare them to black-box and glass-box models, and examine their trade-off. You’ll also get you up to speed with a vast array of interpretation methods, also known as Explainable AI (XAI) methods, and how to apply them to different use cases, be it for classification or regression, for tabular, time-series, image or text. In addition to the step-by-step code, this book will also help you interpret model outcomes using examples. You’ll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. The methods you’ll explore here range from state-of-the-art feature selection and dataset debiasing methods to monotonic constraints and adversarial retraining. By the end of this book, you'll be able to understand ML models better and enhance them through interpretability tuning.
Table of Contents (19 chapters)
1
Section 1: Introduction to Machine Learning Interpretation
5
Section 2: Mastering Interpretation Methods
12
Section 3:Tuning for Interpretability

Identifying influential features with factor prioritization

The Morris Method is one of several global sensitivity analysis methods that range from simpler Fractional Factorial to complicated Monte Carlo Filtering. Morris is somewhere in-between this spectrum, falling into two categories. It uses one-at-a-time sampling, which means that only one value changes between consecutive simulations. It's also elementary effects (EE), which means that it doesn't quantify the exact effect of a factor in a model but rather gauges its importance and relationship with other factors. By the way, factor is just another word for a feature or variable that's commonly used in applied statistics. To be consistent with the related theory, we will use this word in this and the next section.

Another property of Morris is that it's less computationally expensive than the variance-based methods we will study next. It can provide more insights than simpler and less costly methods such...