Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Interpretable Machine Learning with Python
  • Table Of Contents Toc
Interpretable Machine Learning with Python

Interpretable Machine Learning with Python

By : Serg Masís
4.7 (26)
close
close
Interpretable Machine Learning with Python

Interpretable Machine Learning with Python

4.7 (26)
By: Serg Masís

Overview of this book

Do you want to gain a deeper understanding of your models and better mitigate poor prediction risks associated with machine learning interpretation? If so, then Interpretable Machine Learning with Python deserves a place on your bookshelf. We’ll be starting off with the fundamentals of interpretability, its relevance in business, and exploring its key aspects and challenges. As you progress through the chapters, you'll then focus on how white-box models work, compare them to black-box and glass-box models, and examine their trade-off. You’ll also get you up to speed with a vast array of interpretation methods, also known as Explainable AI (XAI) methods, and how to apply them to different use cases, be it for classification or regression, for tabular, time-series, image or text. In addition to the step-by-step code, this book will also help you interpret model outcomes using examples. You’ll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. The methods you’ll explore here range from state-of-the-art feature selection and dataset debiasing methods to monotonic constraints and adversarial retraining. By the end of this book, you'll be able to understand ML models better and enhance them through interpretability tuning.
Table of Contents (19 chapters)
close
close
1
Section 1: Introduction to Machine Learning Interpretation
5
Section 2: Mastering Interpretation Methods
12
Section 3:Tuning for Interpretability

Chapter 10: Feature Selection and Engineering for Interpretability

In the first three chapters, we discussed how complexity hinders machine learning (ML) interpretability. There's a trade-off because you want some complexity to maximize predictive performance, yet not to the extent that you cannot rely on the model to satisfy the tenets of interpretability: fairness, accountability, and transparency. This chapter is the first of four focused on how to tune for interpretability. One of the easiest ways to improve interpretability is through feature selection. It has many benefits, such as faster training and making the model easier to interpret. But if these two reasons don't convince you, perhaps another one will.

A common misunderstanding is that complex models can self-select features and perform well nonetheless, so why even bother to select features? Yes, many model classes have mechanisms that can take care of useless features, but they aren't perfect. And the...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Interpretable Machine Learning with Python
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon