Book Image

Interpretable Machine Learning with Python

By : Serg Masís
Book Image

Interpretable Machine Learning with Python

By: Serg Masís

Overview of this book

Do you want to gain a deeper understanding of your models and better mitigate poor prediction risks associated with machine learning interpretation? If so, then Interpretable Machine Learning with Python deserves a place on your bookshelf. We’ll be starting off with the fundamentals of interpretability, its relevance in business, and exploring its key aspects and challenges. As you progress through the chapters, you'll then focus on how white-box models work, compare them to black-box and glass-box models, and examine their trade-off. You’ll also get you up to speed with a vast array of interpretation methods, also known as Explainable AI (XAI) methods, and how to apply them to different use cases, be it for classification or regression, for tabular, time-series, image or text. In addition to the step-by-step code, this book will also help you interpret model outcomes using examples. You’ll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. The methods you’ll explore here range from state-of-the-art feature selection and dataset debiasing methods to monotonic constraints and adversarial retraining. By the end of this book, you'll be able to understand ML models better and enhance them through interpretability tuning.
Table of Contents (19 chapters)
1
Section 1: Introduction to Machine Learning Interpretation
5
Section 2: Mastering Interpretation Methods
12
Section 3:Tuning for Interpretability

Chapter 13: Adversarial Robustness

Machine learning interpretation has many concerns, ranging from knowledge discovery to high-stakes ones with tangible ethical implications, such as the fairness issues examined in the last two chapters. In this chapter, we will direct our attention to concerns involving reliability, safety, and security.

As we realized using the contrastive explanation method (CEM) in Chapter 8, Visualizing Convolutional Neural Networks, we can easily trick an image classifier into making embarrassingly false predictions. This ability can have serious ramifications. For instance, a perpetrator can place a black sticker on a yield sign, and while most drivers would still recognize this as a yield sign, a self-driving car would no longer recognize it and, as a result, crash. A bank robber could wear a cooling suit designed to trick a bank vault's thermal imaging system, and while any human would notice it, the imaging system wouldn't.

It doesn't...