Book Image

Interpretable Machine Learning with Python

By : Serg Masís
Book Image

Interpretable Machine Learning with Python

By: Serg Masís

Overview of this book

Do you want to gain a deeper understanding of your models and better mitigate poor prediction risks associated with machine learning interpretation? If so, then Interpretable Machine Learning with Python deserves a place on your bookshelf. We’ll be starting off with the fundamentals of interpretability, its relevance in business, and exploring its key aspects and challenges. As you progress through the chapters, you'll then focus on how white-box models work, compare them to black-box and glass-box models, and examine their trade-off. You’ll also get you up to speed with a vast array of interpretation methods, also known as Explainable AI (XAI) methods, and how to apply them to different use cases, be it for classification or regression, for tabular, time-series, image or text. In addition to the step-by-step code, this book will also help you interpret model outcomes using examples. You’ll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. The methods you’ll explore here range from state-of-the-art feature selection and dataset debiasing methods to monotonic constraints and adversarial retraining. By the end of this book, you'll be able to understand ML models better and enhance them through interpretability tuning.
Table of Contents (19 chapters)
1
Section 1: Introduction to Machine Learning Interpretation
5
Section 2: Mastering Interpretation Methods
12
Section 3:Tuning for Interpretability

Recognizing the trade-off between performance and interpretability

We have briefly touched on this topic before, but high performance often requires complexity, and complexity inhibits interpretability. As studied in Chapter 2, Key Concepts of Interpretability, this complexity comes from primarily three sources: non-linearity, non-monotonicity, and interactivity. If the model adds any complexity, it is compounded by the number and nature of features in your dataset, which by itself is a source of complexity.

Special model properties

These special properties can help make a model more interpretable.

The key property: explainability

In Chapter 1, Interpretation, Interpretability, and Explainability; and Why Does It All Matter?, we discussed why being able to look under the hood of the model and intuitively understand how all its moving parts derive its predictions in a consistent manner is, mostly, what separates explainability from interpretability. This property is also...