Book Image

Interpretable Machine Learning with Python

By : Serg Masís
Book Image

Interpretable Machine Learning with Python

By: Serg Masís

Overview of this book

Do you want to gain a deeper understanding of your models and better mitigate poor prediction risks associated with machine learning interpretation? If so, then Interpretable Machine Learning with Python deserves a place on your bookshelf. We’ll be starting off with the fundamentals of interpretability, its relevance in business, and exploring its key aspects and challenges. As you progress through the chapters, you'll then focus on how white-box models work, compare them to black-box and glass-box models, and examine their trade-off. You’ll also get you up to speed with a vast array of interpretation methods, also known as Explainable AI (XAI) methods, and how to apply them to different use cases, be it for classification or regression, for tabular, time-series, image or text. In addition to the step-by-step code, this book will also help you interpret model outcomes using examples. You’ll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. The methods you’ll explore here range from state-of-the-art feature selection and dataset debiasing methods to monotonic constraints and adversarial retraining. By the end of this book, you'll be able to understand ML models better and enhance them through interpretability tuning.
Table of Contents (19 chapters)
1
Section 1: Introduction to Machine Learning Interpretation
5
Section 2: Mastering Interpretation Methods
12
Section 3:Tuning for Interpretability

Discovering newer interpretable (glass-box) models

Recently, there are significant efforts in both industry and in academia to create new models that can have enough complexity to find the sweet spot between underfitting and overfitting, known as the bias-variance trade-off, but retain an adequate level of explainability.

Many models fit this description, but most of them are meant for specific use cases, haven't been properly tested yet, or have released a library or open-sourced the code. However, two general-purpose ones are already gaining traction, which we will look at now.

Explainable Boosting Machine (EBM)

EBM is part of Microsoft's InterpretML framework, which includes many of the model-agnostic methods we will use later in the book.

EBM leverages the GAMs we mentioned earlier, which are like linear models but look like this:

Individual functions through are fitted to each feature using spline functions. Then a link function g adapts the GAM...