Book Image

Hands-On Explainable AI (XAI) with Python

By : Denis Rothman
Book Image

Hands-On Explainable AI (XAI) with Python

By: Denis Rothman

Overview of this book

Effectively translating AI insights to business stakeholders requires careful planning, design, and visualization choices. Describing the problem, the model, and the relationships among variables and their findings are often subtle, surprising, and technically complex. Hands-On Explainable AI (XAI) with Python will see you work with specific hands-on machine learning Python projects that are strategically arranged to enhance your grasp on AI results analysis. You will be building models, interpreting results with visualizations, and integrating XAI reporting tools and different applications. You will build XAI solutions in Python, TensorFlow 2, Google Cloud’s XAI platform, Google Colaboratory, and other frameworks to open up the black box of machine learning models. The book will introduce you to several open-source XAI tools for Python that can be used throughout the machine learning project life cycle. You will learn how to explore machine learning model results, review key influencing variables and variable relationships, detect and handle bias and ethics issues, and integrate predictions using Python along with supporting the visualization of machine learning models into user explainable interfaces. By the end of this AI book, you will possess an in-depth understanding of the core concepts of XAI.
Table of Contents (16 chapters)
14
Other Books You May Enjoy
15
Index

Summary

In this chapter, we approached XAI with a top-to-bottom method. We learned that the counterfactual explanations method analyzes the output of a model unconditionally. The explanation goes beyond explaining why a prediction is true or not. The model does not come into account either. The counterfactual explanations method is based on four key pillars: belief, trust, justification, and sensitivity.

A user must first believe a prediction. Belief will build trust in an AI system. However, even if a user believes a prediction, it must be true. A model can produce a high accuracy rate on a well-designed dataset, which shows that it should be true.

The truth alone will not suffice. A court of law might request a well-explained justification of a prediction. A defendant might not agree with the reasons provided by a bank to refuse a loan based on a decision made by an AI system.

Counterfactual explanations will provide a unique dimension: sensitivity. The method will...