Book Image

The Natural Language Processing Workshop

By : Rohan Chopra, Aniruddha M. Godbole, Nipun Sadvilkar, Muzaffar Bashir Shah, Sohom Ghosh, Dwight Gunning
5 (1)
Book Image

The Natural Language Processing Workshop

5 (1)
By: Rohan Chopra, Aniruddha M. Godbole, Nipun Sadvilkar, Muzaffar Bashir Shah, Sohom Ghosh, Dwight Gunning

Overview of this book

Do you want to learn how to communicate with computer systems using Natural Language Processing (NLP) techniques, or make a machine understand human sentiments? Do you want to build applications like Siri, Alexa, or chatbots, even if you’ve never done it before? With The Natural Language Processing Workshop, you can expect to make consistent progress as a beginner, and get up to speed in an interactive way, with the help of hands-on activities and fun exercises. The book starts with an introduction to NLP. You’ll study different approaches to NLP tasks, and perform exercises in Python to understand the process of preparing datasets for NLP models. Next, you’ll use advanced NLP algorithms and visualization techniques to collect datasets from open websites, and to summarize and generate random text from a document. In the final chapters, you’ll use NLP to create a chatbot that detects positive or negative sentiment in text documents such as movie reviews. By the end of this book, you’ll be equipped with the essential NLP tools and techniques you need to solve common business problems that involve processing text.
Table of Contents (10 chapters)
Preface

Introduction

In the previous chapter, we learned about different ways to collect data from local files and online resources. In this chapter, we will focus on topic modeling, which is an important area within natural language processing. Topic modeling is a simple way to capture the sense of what a document or a collection of documents is about. Note that in this case, documents are any coherent collection of words, which could be as short as a tweet or as long as an encyclopedia.

Topic modeling may be thought of as a way to automate the manual task of reading given document(s) to write an abstract, which you will then use to map the document(s) to a set of topics. Topic modeling is mostly done using unsupervised learning algorithms that detect topics on their own. Topic-modeling algorithms operate by performing statistical analysis on words or tokens in documents and using those statistics to automatically assign each document to multiple topics. A topic is represented by an arbitrary...