Book Image

Learn Amazon SageMaker

By : Julien Simon
Book Image

Learn Amazon SageMaker

By: Julien Simon

Overview of this book

Amazon SageMaker enables you to quickly build, train, and deploy machine learning (ML) models at scale, without managing any infrastructure. It helps you focus on the ML problem at hand and deploy high-quality models by removing the heavy lifting typically involved in each step of the ML process. This book is a comprehensive guide for data scientists and ML developers who want to learn the ins and outs of Amazon SageMaker. You’ll understand how to use various modules of SageMaker as a single toolset to solve the challenges faced in ML. As you progress, you’ll cover features such as AutoML, built-in algorithms and frameworks, and the option for writing your own code and algorithms to build ML models. Later, the book will show you how to integrate Amazon SageMaker with popular deep learning libraries such as TensorFlow and PyTorch to increase the capabilities of existing models. You’ll also learn to get the models to production faster with minimum effort and at a lower cost. Finally, you’ll explore how to use Amazon SageMaker Debugger to analyze, detect, and highlight problems to understand the current model state and improve model accuracy. By the end of this Amazon book, you’ll be able to use Amazon SageMaker on the full spectrum of ML workflows, from experimentation, training, and monitoring to scaling, deployment, and automation.
Table of Contents (19 chapters)
1
Section 1: Introduction to Amazon SageMaker
4
Section 2: Building and Training Models
11
Section 3: Diving Deeper on Training
14
Section 4: Managing Models in Production

Processing data with other AWS services

Over the years, AWS has built many analytics services (https://aws.amazon.com/big-data/). Depending on your technical environment, you could pick one or the other to process data for your machine learning workflows.

In this section, you'll learn about three services that are popular choices for analytics workloads, why they make sense in a machine learning context, and how to get started with them:

  • Amazon Elastic Map Reduce (EMR)
  • AWS Glue
  • Amazon Athena

Amazon Elastic Map Reduce

Launched in 2009, Amazon Elastic Map Reduce, aka Amazon EMR, started as a managed environment for Apache Hadoop applications (https://aws.amazon.com/emr/). Over the years, the service has added support for plenty of additional projects, such as Spark, Hive, HBase, Flink, and more. With additional features like EMRFS, an implementation of HDFS backed by Amazon S3, EMR is a prime contender for data processing at scale. You can learn...