Book Image

Learn Amazon SageMaker

By : Julien Simon
Book Image

Learn Amazon SageMaker

By: Julien Simon

Overview of this book

Amazon SageMaker enables you to quickly build, train, and deploy machine learning (ML) models at scale, without managing any infrastructure. It helps you focus on the ML problem at hand and deploy high-quality models by removing the heavy lifting typically involved in each step of the ML process. This book is a comprehensive guide for data scientists and ML developers who want to learn the ins and outs of Amazon SageMaker. You’ll understand how to use various modules of SageMaker as a single toolset to solve the challenges faced in ML. As you progress, you’ll cover features such as AutoML, built-in algorithms and frameworks, and the option for writing your own code and algorithms to build ML models. Later, the book will show you how to integrate Amazon SageMaker with popular deep learning libraries such as TensorFlow and PyTorch to increase the capabilities of existing models. You’ll also learn to get the models to production faster with minimum effort and at a lower cost. Finally, you’ll explore how to use Amazon SageMaker Debugger to analyze, detect, and highlight problems to understand the current model state and improve model accuracy. By the end of this Amazon book, you’ll be able to use Amazon SageMaker on the full spectrum of ML workflows, from experimentation, training, and monitoring to scaling, deployment, and automation.
Table of Contents (19 chapters)
Section 1: Introduction to Amazon SageMaker
Section 2: Building and Training Models
Section 3: Diving Deeper on Training
Section 4: Managing Models in Production

Discovering Amazon SageMaker Autopilot

Added to Amazon SageMaker in late 2019, Amazon SageMaker Autopilot is an AutoML capability that takes care of all machine learning steps for you. You only need to upload a columnar dataset to an Amazon S3 bucket, and define the column you want the model to learn (the target attribute). Then, you simply launch an Autopilot job, with either a few clicks in the SageMaker Studio GUI, or a couple of lines of code with the SageMaker SDK.

The simplicity of SageMaker Autopilot doesn't come at the expense of transparency and control. You can see how your models are built, and you can keep experimenting to refine results. In that respect, SageMaker Autopilot should appeal to new and seasoned practitioners alike.

In this section, you'll learn about the different steps of a SageMaker Autopilot job, and how they contribute to delivering high-quality models:

  • Analyzing data
  • Feature engineering
  • Model tuning