Book Image

Learn Amazon SageMaker

By : Julien Simon
Book Image

Learn Amazon SageMaker

By: Julien Simon

Overview of this book

Amazon SageMaker enables you to quickly build, train, and deploy machine learning (ML) models at scale, without managing any infrastructure. It helps you focus on the ML problem at hand and deploy high-quality models by removing the heavy lifting typically involved in each step of the ML process. This book is a comprehensive guide for data scientists and ML developers who want to learn the ins and outs of Amazon SageMaker. You’ll understand how to use various modules of SageMaker as a single toolset to solve the challenges faced in ML. As you progress, you’ll cover features such as AutoML, built-in algorithms and frameworks, and the option for writing your own code and algorithms to build ML models. Later, the book will show you how to integrate Amazon SageMaker with popular deep learning libraries such as TensorFlow and PyTorch to increase the capabilities of existing models. You’ll also learn to get the models to production faster with minimum effort and at a lower cost. Finally, you’ll explore how to use Amazon SageMaker Debugger to analyze, detect, and highlight problems to understand the current model state and improve model accuracy. By the end of this Amazon book, you’ll be able to use Amazon SageMaker on the full spectrum of ML workflows, from experimentation, training, and monitoring to scaling, deployment, and automation.
Table of Contents (19 chapters)
1
Section 1: Introduction to Amazon SageMaker
4
Section 2: Building and Training Models
11
Section 3: Diving Deeper on Training
14
Section 4: Managing Models in Production

Using the SageMaker SDK with built-in algorithms

Being familiar with the SageMaker SDK is important to making the most of SageMaker. You can find its documentation at https://sagemaker.readthedocs.io.

Walking through a simple example is the best way to get started. In this section, we'll use the Linear Learner algorithm to train a regression model on the Boston Housing dataset. We'll proceed very slowly, leaving no stone unturned. Once again, these concepts are essential, so please take your time, and make sure you understand every step fully.

Note:

Reminder: I recommend that you follow along and run the code available in the companion GitHub repository. Every effort has been made to check all code samples present in the text. However, for those of you who have an electronic version, copying and pasting may have unpredictable results: formatting issues, weird quotes, and so on.

Preparing data

Built-in algorithms expect the dataset to be in a certain format...