Book Image

Learn Amazon SageMaker

By : Julien Simon
Book Image

Learn Amazon SageMaker

By: Julien Simon

Overview of this book

Amazon SageMaker enables you to quickly build, train, and deploy machine learning (ML) models at scale, without managing any infrastructure. It helps you focus on the ML problem at hand and deploy high-quality models by removing the heavy lifting typically involved in each step of the ML process. This book is a comprehensive guide for data scientists and ML developers who want to learn the ins and outs of Amazon SageMaker. You’ll understand how to use various modules of SageMaker as a single toolset to solve the challenges faced in ML. As you progress, you’ll cover features such as AutoML, built-in algorithms and frameworks, and the option for writing your own code and algorithms to build ML models. Later, the book will show you how to integrate Amazon SageMaker with popular deep learning libraries such as TensorFlow and PyTorch to increase the capabilities of existing models. You’ll also learn to get the models to production faster with minimum effort and at a lower cost. Finally, you’ll explore how to use Amazon SageMaker Debugger to analyze, detect, and highlight problems to understand the current model state and improve model accuracy. By the end of this Amazon book, you’ll be able to use Amazon SageMaker on the full spectrum of ML workflows, from experimentation, training, and monitoring to scaling, deployment, and automation.
Table of Contents (19 chapters)
1
Section 1: Introduction to Amazon SageMaker
4
Section 2: Building and Training Models
11
Section 3: Diving Deeper on Training
14
Section 4: Managing Models in Production

Discovering the CV built-in algorithms in Amazon SageMaker

SageMaker includes three CV algorithms, based on proven deep learning networks. In this section, you'll learn about these algorithms, what kind of problems they can help you solve, and what their training scenarios are:

  • Image classification assigns one or more labels to an image.
  • Object detection detects and classifies objects in an image.
  • Semantic segmentation assigns every pixel of an image to a specific class.

Discovering the image classification algorithm

Starting from an input image, the image classification algorithm predicts a probability for each class present in the training dataset. This algorithm is based on the ResNet convolutional neural network (https://arxiv.org/abs/1512.03385). Published in 2015, ResNet won the ILSVRC classification task that same year (http://www.image-net.org/challenges/LSVRC/). Since then, it has become a popular and versatile choice for image classification...