Book Image

The Supervised Learning Workshop - Second Edition

By : Blaine Bateman, Ashish Ranjan Jha, Benjamin Johnston, Ishita Mathur
Book Image

The Supervised Learning Workshop - Second Edition

By: Blaine Bateman, Ashish Ranjan Jha, Benjamin Johnston, Ishita Mathur

Overview of this book

Would you like to understand how and why machine learning techniques and data analytics are spearheading enterprises globally? From analyzing bioinformatics to predicting climate change, machine learning plays an increasingly pivotal role in our society. Although the real-world applications may seem complex, this book simplifies supervised learning for beginners with a step-by-step interactive approach. Working with real-time datasets, you’ll learn how supervised learning, when used with Python, can produce efficient predictive models. Starting with the fundamentals of supervised learning, you’ll quickly move to understand how to automate manual tasks and the process of assessing date using Jupyter and Python libraries like pandas. Next, you’ll use data exploration and visualization techniques to develop powerful supervised learning models, before understanding how to distinguish variables and represent their relationships using scatter plots, heatmaps, and box plots. After using regression and classification models on real-time datasets to predict future outcomes, you’ll grasp advanced ensemble techniques such as boosting and random forests. Finally, you’ll learn the importance of model evaluation in supervised learning and study metrics to evaluate regression and classification tasks. By the end of this book, you’ll have the skills you need to work on your real-life supervised learning Python projects.
Table of Contents (9 chapters)

Stacking

Stacking, or stacked generalization, is also called meta ensembling. It is a model ensembling technique that consists of combining data from multiple models' predictions and using them as features to generate a new model. The stacked model will most likely outperform each of the individual models due to the smoothing effect it adds, as well as due to its ability to "choose" the base model that performs best in certain scenarios. Keeping this in mind, stacking is usually most effective when each of the base models is significantly different from each other.

Stacking is widely used in real-world applications. One popular example comes from the well-known Netflix competition whose two top performers built solutions that were based on stacking models. Netflix is a well-known streaming platform and the competition was about building the best recommendation engine. The winning algorithm was based on feature-weighted-linear-stacking, which basically had meta features...