Book Image

The Supervised Learning Workshop - Second Edition

By : Blaine Bateman, Ashish Ranjan Jha, Benjamin Johnston, Ishita Mathur
Book Image

The Supervised Learning Workshop - Second Edition

By: Blaine Bateman, Ashish Ranjan Jha, Benjamin Johnston, Ishita Mathur

Overview of this book

Would you like to understand how and why machine learning techniques and data analytics are spearheading enterprises globally? From analyzing bioinformatics to predicting climate change, machine learning plays an increasingly pivotal role in our society. Although the real-world applications may seem complex, this book simplifies supervised learning for beginners with a step-by-step interactive approach. Working with real-time datasets, you’ll learn how supervised learning, when used with Python, can produce efficient predictive models. Starting with the fundamentals of supervised learning, you’ll quickly move to understand how to automate manual tasks and the process of assessing date using Jupyter and Python libraries like pandas. Next, you’ll use data exploration and visualization techniques to develop powerful supervised learning models, before understanding how to distinguish variables and represent their relationships using scatter plots, heatmaps, and box plots. After using regression and classification models on real-time datasets to predict future outcomes, you’ll grasp advanced ensemble techniques such as boosting and random forests. Finally, you’ll learn the importance of model evaluation in supervised learning and study metrics to evaluate regression and classification tasks. By the end of this book, you’ll have the skills you need to work on your real-life supervised learning Python projects.
Table of Contents (9 chapters)

Evaluation Metrics

Evaluating a machine learning model is an essential part of any project: once we have allowed our model to learn from the training data, the next step is to measure the performance of the model. We need to find a metric that can not only tell us how accurate the predictions made by the model are, but also allow us to compare the performance of a number of models so that we can select the one best suited for our use case.

Defining a metric is usually one of the first things we should do when defining our problem statement and before we begin the exploratory data analysis, since it's a good idea to plan ahead and think about how we intend to evaluate the performance of any model we build and how to judge whether it is performing optimally. Eventually, calculating the performance evaluation metric will fit into the machine learning pipeline.

Needless to say, evaluation metrics will be different for regression tasks and classification tasks, since the output...