Book Image

Python Machine Learning By Example - Third Edition

By : Yuxi (Hayden) Liu
Book Image

Python Machine Learning By Example - Third Edition

By: Yuxi (Hayden) Liu

Overview of this book

Python Machine Learning By Example, Third Edition serves as a comprehensive gateway into the world of machine learning (ML). With six new chapters, on topics including movie recommendation engine development with Naïve Bayes, recognizing faces with support vector machine, predicting stock prices with artificial neural networks, categorizing images of clothing with convolutional neural networks, predicting with sequences using recurring neural networks, and leveraging reinforcement learning for making decisions, the book has been considerably updated for the latest enterprise requirements. At the same time, this book provides actionable insights on the key fundamentals of ML with Python programming. Hayden applies his expertise to demonstrate implementations of algorithms in Python, both from scratch and with libraries. Each chapter walks through an industry-adopted application. With the help of realistic examples, you will gain an understanding of the mechanics of ML techniques in areas such as exploratory data analysis, feature engineering, classification, regression, clustering, and NLP. By the end of this ML Python book, you will have gained a broad picture of the ML ecosystem and will be well-versed in the best practices of applying ML techniques to solve problems.
Table of Contents (17 chapters)
Other Books You May Enjoy

Discovering underlying topics in newsgroups

A topic model is a type of statistical model for discovering the probability distributions of words linked to the topic. The topic in topic modeling does not exactly match the dictionary definition, but corresponds to a nebulous statistical concept, which is an abstraction that occurs in a collection of documents.

When we read a document, we expect certain words appearing in the title or the body of the text to capture the semantic context of the document. An article about Python programming will have words such as class and function, while a story about snakes will have words such as eggs and afraid. Documents usually have multiple topics; for instance, this recipe is about three things: topic modeling, non-negative matrix factorization, and latent Dirichlet allocation, which we will discuss shortly. We can therefore define an additive model for topics by assigning different weights to topics.