Book Image

Python Machine Learning By Example - Third Edition

By : Yuxi (Hayden) Liu
Book Image

Python Machine Learning By Example - Third Edition

By: Yuxi (Hayden) Liu

Overview of this book

Python Machine Learning By Example, Third Edition serves as a comprehensive gateway into the world of machine learning (ML). With six new chapters, on topics including movie recommendation engine development with Naïve Bayes, recognizing faces with support vector machine, predicting stock prices with artificial neural networks, categorizing images of clothing with convolutional neural networks, predicting with sequences using recurring neural networks, and leveraging reinforcement learning for making decisions, the book has been considerably updated for the latest enterprise requirements. At the same time, this book provides actionable insights on the key fundamentals of ML with Python programming. Hayden applies his expertise to demonstrate implementations of algorithms in Python, both from scratch and with libraries. Each chapter walks through an industry-adopted application. With the help of realistic examples, you will gain an understanding of the mechanics of ML techniques in areas such as exploratory data analysis, feature engineering, classification, regression, clustering, and NLP. By the end of this ML Python book, you will have gained a broad picture of the ML ecosystem and will be well-versed in the best practices of applying ML techniques to solve problems.
Table of Contents (17 chapters)
Other Books You May Enjoy

Getting started with classification

Movie recommendation can be framed as a machine learning classification problem. If it is predicted that you like a movie, for example, then it will be on your recommended list, otherwise, it won't. Let's get started by learning the important concepts of machine learning classification.

Classification is one of the main instances of supervised learning. Given a training set of data containing observations and their associated categorical outputs, the goal of classification is to learn a general rule that correctly maps the observations (also called features or predictive variables) to the target categories (also called labels or classes). Putting it another way, a trained classification model will be generated after the model learns from the features and targets of training samples, as shown in the first half of Figure 2.1. When new or unseen data comes in, the trained model will be able to determine their...