Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Python Machine Learning by Example
  • Table Of Contents Toc
  • Feedback & Rating feedback
Python Machine Learning by Example

Python Machine Learning by Example - Third Edition

By : Yuxi (Hayden) Liu
4 (20)
close
close
Python Machine Learning by Example

Python Machine Learning by Example

4 (20)
By: Yuxi (Hayden) Liu

Overview of this book

Python Machine Learning By Example, Third Edition serves as a comprehensive gateway into the world of machine learning (ML). With six new chapters, on topics including movie recommendation engine development with Naïve Bayes, recognizing faces with support vector machine, predicting stock prices with artificial neural networks, categorizing images of clothing with convolutional neural networks, predicting with sequences using recurring neural networks, and leveraging reinforcement learning for making decisions, the book has been considerably updated for the latest enterprise requirements. At the same time, this book provides actionable insights on the key fundamentals of ML with Python programming. Hayden applies his expertise to demonstrate implementations of algorithms in Python, both from scratch and with libraries. Each chapter walks through an industry-adopted application. With the help of realistic examples, you will gain an understanding of the mechanics of ML techniques in areas such as exploratory data analysis, feature engineering, classification, regression, clustering, and NLP. By the end of this ML Python book, you will have gained a broad picture of the ML ecosystem and will be well-versed in the best practices of applying ML techniques to solve problems.
Table of Contents (17 chapters)
close
close
15
Other Books You May Enjoy
16
Index

Predicting Online Ad Click-Through with Tree-Based Algorithms

In the previous chapter, we built a movie recommender. In this chapter and the next, we will be solving one of the most data-driven problems in digital advertising: ad click-through prediction—given a user and the page they are visiting, this predicts how likely it is that they will click on a given ad. We will focus on learning tree-based algorithms (including decision trees, random forest models, and boosted trees) and utilize them to tackle this billion-dollar problem.

We will be exploring decision trees from the root to the leaves, as well as the aggregated version, a forest of trees. This won’t be a theory-only chapter, as there are a lot of hand calculations and implementations of tree models from scratch included. We will be using scikit-learn and XGBoost, a popular Python package for tree-based algorithms.

We will cover the following topics in this chapter:

  • A brief overview of ad...
Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Python Machine Learning by Example
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon