Book Image

Python Machine Learning By Example - Third Edition

By : Yuxi (Hayden) Liu
Book Image

Python Machine Learning By Example - Third Edition

By: Yuxi (Hayden) Liu

Overview of this book

Python Machine Learning By Example, Third Edition serves as a comprehensive gateway into the world of machine learning (ML). With six new chapters, on topics including movie recommendation engine development with Naïve Bayes, recognizing faces with support vector machine, predicting stock prices with artificial neural networks, categorizing images of clothing with convolutional neural networks, predicting with sequences using recurring neural networks, and leveraging reinforcement learning for making decisions, the book has been considerably updated for the latest enterprise requirements. At the same time, this book provides actionable insights on the key fundamentals of ML with Python programming. Hayden applies his expertise to demonstrate implementations of algorithms in Python, both from scratch and with libraries. Each chapter walks through an industry-adopted application. With the help of realistic examples, you will gain an understanding of the mechanics of ML techniques in areas such as exploratory data analysis, feature engineering, classification, regression, clustering, and NLP. By the end of this ML Python book, you will have gained a broad picture of the ML ecosystem and will be well-versed in the best practices of applying ML techniques to solve problems.
Table of Contents (17 chapters)
Other Books You May Enjoy

Predicting Online Ad Click-Through with Logistic Regression

In the previous chapter, we predicted ads click-through using tree algorithms. In this chapter, we will continue our journey of tackling the billion-dollar problem. We will focus on learning a very (probably the most) scalable classification model—logistic regression. We will explore what the logistic function is, how to train a logistic regression model, adding regularization to the model, and variants of logistic regression that are applicable to very large datasets. Besides its application in classification, we will also discuss how logistic regression and random forest are used to pick significant features. You won't get bored as there will be lots of implementations from scratch with scikit-learn and TensorFlow.

In this chapter, we will cover the following topics:

  • Categorical feature encoding
  • The logistic function
  • What is logistic regression?
  • Gradient descent and stochastic...