Book Image

Python Machine Learning By Example - Third Edition

By : Yuxi (Hayden) Liu
Book Image

Python Machine Learning By Example - Third Edition

By: Yuxi (Hayden) Liu

Overview of this book

Python Machine Learning By Example, Third Edition serves as a comprehensive gateway into the world of machine learning (ML). With six new chapters, on topics including movie recommendation engine development with Naïve Bayes, recognizing faces with support vector machine, predicting stock prices with artificial neural networks, categorizing images of clothing with convolutional neural networks, predicting with sequences using recurring neural networks, and leveraging reinforcement learning for making decisions, the book has been considerably updated for the latest enterprise requirements. At the same time, this book provides actionable insights on the key fundamentals of ML with Python programming. Hayden applies his expertise to demonstrate implementations of algorithms in Python, both from scratch and with libraries. Each chapter walks through an industry-adopted application. With the help of realistic examples, you will gain an understanding of the mechanics of ML techniques in areas such as exploratory data analysis, feature engineering, classification, regression, clustering, and NLP. By the end of this ML Python book, you will have gained a broad picture of the ML ecosystem and will be well-versed in the best practices of applying ML techniques to solve problems.
Table of Contents (17 chapters)
Other Books You May Enjoy

Learning the essentials of Apache Spark

Apache Spark is a distributed cluster computing framework designed for fast and general-purpose computation. It is an open-source technology originally developed by Berkeley's AMPLab at the University of California. It provides an easy-to-use interface for programming interactive queries and stream processing data. What makes it a popular big data analytics tool is its implicit data parallelism, where it automates operations on data in parallel across processors in the computing cluster. Users only need to focus on how they want to manipulate the data, without worrying about how it is distributed among all the computing nodes or which part of the data a node is responsible for.

Bear in mind that this book is mainly about machine learning. Hence, we will only briefly cover the fundamentals of Spark, including its components, installation, deployment, data structure, and core programming.

Breaking down Spark

We will start with...