Book Image

The Statistics and Calculus with Python Workshop

By : Peter Farrell, Alvaro Fuentes, Ajinkya Sudhir Kolhe, Quan Nguyen, Alexander Joseph Sarver, Marios Tsatsos
5 (1)
Book Image

The Statistics and Calculus with Python Workshop

5 (1)
By: Peter Farrell, Alvaro Fuentes, Ajinkya Sudhir Kolhe, Quan Nguyen, Alexander Joseph Sarver, Marios Tsatsos

Overview of this book

Are you looking to start developing artificial intelligence applications? Do you need a refresher on key mathematical concepts? Full of engaging practical exercises, The Statistics and Calculus with Python Workshop will show you how to apply your understanding of advanced mathematics in the context of Python. The book begins by giving you a high-level overview of the libraries you'll use while performing statistics with Python. As you progress, you'll perform various mathematical tasks using the Python programming language, such as solving algebraic functions with Python starting with basic functions, and then working through transformations and solving equations. Later chapters in the book will cover statistics and calculus concepts and how to use them to solve problems and gain useful insights. Finally, you'll study differential equations with an emphasis on numerical methods and learn about algorithms that directly calculate values of functions. By the end of this book, you’ll have learned how to apply essential statistics and calculus concepts to develop robust Python applications that solve business challenges.
Table of Contents (14 chapters)
Preface

Introduction

Calculus has been called the science of change, since its tools were developed to deal with constantly changing values such as the position and velocity of planets and projectiles. Previously, there was no way to express this kind of change in a variable.

The first important topic in calculus is the derivative. This is the rate of change of a function at a given point. Straight lines follow a simple pattern known as the slope. This is the change in the y value (the rise) over a given range of x values (the run):

Figure 10.1: Slope of a line

In Figure 10.1, the y value in the line increases by 2 units for every 1-unit increase in the x value, so we divide 2 by 1 to get a slope of 2.

However, the slope of a curve isn't constant over the whole curve like it is in a line. So, as you can see in Figure 10.2, the rate of change of this function at point A is different from the rate of change at point B:

Figure 10.2: Finding...