Book Image

Hands-On Computer Vision with Detectron2

By : Van Vung Pham
5 (4)
Book Image

Hands-On Computer Vision with Detectron2

5 (4)
By: Van Vung Pham

Overview of this book

Computer vision is a crucial component of many modern businesses, including automobiles, robotics, and manufacturing, and its market is growing rapidly. This book helps you explore Detectron2, Facebook's next-gen library providing cutting-edge detection and segmentation algorithms. It’s used in research and practical projects at Facebook to support computer vision tasks, and its models can be exported to TorchScript or ONNX for deployment. The book provides you with step-by-step guidance on using existing models in Detectron2 for computer vision tasks (object detection, instance segmentation, key-point detection, semantic detection, and panoptic segmentation). You’ll get to grips with the theories and visualizations of Detectron2’s architecture and learn how each module in Detectron2 works. As you advance, you’ll build your practical skills by working on two real-life projects (preparing data, training models, fine-tuning models, and deployments) for object detection and instance segmentation tasks using Detectron2. Finally, you’ll deploy Detectron2 models into production and develop Detectron2 applications for mobile devices. By the end of this deep learning book, you’ll have gained sound theoretical knowledge and useful hands-on skills to help you solve advanced computer vision tasks using Detectron2.
Table of Contents (20 chapters)
Part 1: Introduction to Detectron2
Part 2: Developing Custom Object Detection Models
Part 3: Developing a Custom Detectron2 Model for Instance Segmentation Tasks
Part 4: Deploying Detectron2 Models into Production


This chapter discussed the popular data sources for the computer vision community. These data sources often have pre-trained models that help you quickly build computer vision applications. We also learned about the common places to download computer vision datasets. If no datasets exist for a specific computer vision task, this chapter also helped you get images by downloading them from the internet and select a tool for labeling the downloaded images. Furthermore, the computer vision field is developing rapidly, and many different annotation formats are available. Therefore, this chapter also covered popular data formats and the steps to convert these formats into the format supported by Detectron2.

By this time, you should have your dataset ready. The next chapter discusses the architecture of Detectron2 with details regarding the backbone networks and how to select one for an object detection task before training an object detection model using Detectron2.