Book Image

Engineering MLOps

By : Emmanuel Raj
Book Image

Engineering MLOps

By: Emmanuel Raj

Overview of this book

Engineering MLps presents comprehensive insights into MLOps coupled with real-world examples in Azure to help you to write programs, train robust and scalable ML models, and build ML pipelines to train and deploy models securely in production. The book begins by familiarizing you with the MLOps workflow so you can start writing programs to train ML models. Then you’ll then move on to explore options for serializing and packaging ML models post-training to deploy them to facilitate machine learning inference, model interoperability, and end-to-end model traceability. You’ll learn how to build ML pipelines, continuous integration and continuous delivery (CI/CD) pipelines, and monitor pipelines to systematically build, deploy, monitor, and govern ML solutions for businesses and industries. Finally, you’ll apply the knowledge you’ve gained to build real-world projects. By the end of this ML book, you'll have a 360-degree view of MLOps and be ready to implement MLOps in your organization.
Table of Contents (18 chapters)
1
Section 1: Framework for Building Machine Learning Models
7
Section 2: Deploying Machine Learning Models at Scale
13
Section 3: Monitoring Machine Learning Models in Production

Understanding the key principles of monitoring an ML system

Building trust into AI systems is vital these days with the growing demands for products to be data-driven and to adjust to the changing environment and regulatory frameworks. One of the reasons ML projects are failing to bring value to businesses is due to the lack of trust and transparency in their decision making. Many black box models are good at reaching high accuracy, but they become obsolete when it comes to explaining the reasons behind the decisions that have been made. At the time of writing, news has been surfacing that raises these concerns of trust and explainability, as shown in the following figure:

Figure 11.1 – Components of model trust and explainability

This image showcases concerns in important areas in real life. Let's look at how this translates into some key aspects of model explainability, such as model drift, model bias, model transparency, and model compliance...