Book Image

Engineering MLOps

By : Emmanuel Raj
Book Image

Engineering MLOps

By: Emmanuel Raj

Overview of this book

Engineering MLps presents comprehensive insights into MLOps coupled with real-world examples in Azure to help you to write programs, train robust and scalable ML models, and build ML pipelines to train and deploy models securely in production. The book begins by familiarizing you with the MLOps workflow so you can start writing programs to train ML models. Then you’ll then move on to explore options for serializing and packaging ML models post-training to deploy them to facilitate machine learning inference, model interoperability, and end-to-end model traceability. You’ll learn how to build ML pipelines, continuous integration and continuous delivery (CI/CD) pipelines, and monitor pipelines to systematically build, deploy, monitor, and govern ML solutions for businesses and industries. Finally, you’ll apply the knowledge you’ve gained to build real-world projects. By the end of this ML book, you'll have a 360-degree view of MLOps and be ready to implement MLOps in your organization.
Table of Contents (18 chapters)
1
Section 1: Framework for Building Machine Learning Models
7
Section 2: Deploying Machine Learning Models at Scale
13
Section 3: Monitoring Machine Learning Models in Production

Chapter 1: Fundamentals of an MLOps Workflow

Machine learning (ML) is maturing from research to applied business solutions. However, the grim reality is that only 2% of companies using ML have successfully deployed a model in production to enhance their business processes, reported by DeepLearning.AI (https://info.deeplearning.ai/the-batch-companies-slipping-on-ai-goals-self-training-for-better-vision-muppets-and-models-china-vs-us-only-the-best-examples-proliferating-patents). What makes it so hard? And what do we need to do to improve the situation?

To get a solid understanding of this problem and its solution, in this chapter, we will delve into the evolution and intersection of software development and ML. We'll begin by reflecting on some of the trends in traditional software development, starting from the waterfall model to agile to DevOps practices, and how these are evolving to industrialize ML-centric applications. You will be introduced to a systematic approach to operationalizing AI using Machine Learning Operations (MLOps). By the end of this chapter, you will have a solid understanding of MLOps and you will be equipped to implement a generic MLOps workflow that can be used to build, deploy, and monitor a wide range of ML applications.

In this chapter, we're going to cover the following main topics:

  • The evolution of infrastructure and software development
  • Traditional software development challenges
  • Trends of ML adoption in software development
  • Understanding MLOps
  • Concepts and workflow of MLOps