Book Image

Engineering MLOps

By : Emmanuel Raj
Book Image

Engineering MLOps

By: Emmanuel Raj

Overview of this book

Engineering MLps presents comprehensive insights into MLOps coupled with real-world examples in Azure to help you to write programs, train robust and scalable ML models, and build ML pipelines to train and deploy models securely in production. The book begins by familiarizing you with the MLOps workflow so you can start writing programs to train ML models. Then you’ll then move on to explore options for serializing and packaging ML models post-training to deploy them to facilitate machine learning inference, model interoperability, and end-to-end model traceability. You’ll learn how to build ML pipelines, continuous integration and continuous delivery (CI/CD) pipelines, and monitor pipelines to systematically build, deploy, monitor, and govern ML solutions for businesses and industries. Finally, you’ll apply the knowledge you’ve gained to build real-world projects. By the end of this ML book, you'll have a 360-degree view of MLOps and be ready to implement MLOps in your organization.
Table of Contents (18 chapters)
1
Section 1: Framework for Building Machine Learning Models
7
Section 2: Deploying Machine Learning Models at Scale
13
Section 3: Monitoring Machine Learning Models in Production

Structuring your MLOps

The primary goal of MLOps is to make an organization or set of individuals collaborate efficiently to build data and ML-driven assets to solve their business problems. As a result, overall performance and transparency are increased. Working in silos or developing functionalities repeatedly can be extremely costly and time-consuming.

In this section, we will explore how MLOps can be structured within organizations. Getting the MLOps process right is of prime importance. By selecting the right process and tools for your MLOps, you and your team are all set to implement a robust, scalable, frugal, and sustainable MLOps process. For example, I recently helped one of my clients in the healthcare industry to build and optimize their MLOps, which resulted in 76% cost optimization (for storage and compute resources) compared to their previous traditional operations.

The client's team of data scientists witnessed having 30% of their time freed up from mundane...