Book Image

Engineering MLOps

By : Emmanuel Raj
Book Image

Engineering MLOps

By: Emmanuel Raj

Overview of this book

Engineering MLps presents comprehensive insights into MLOps coupled with real-world examples in Azure to help you to write programs, train robust and scalable ML models, and build ML pipelines to train and deploy models securely in production. The book begins by familiarizing you with the MLOps workflow so you can start writing programs to train ML models. Then you’ll then move on to explore options for serializing and packaging ML models post-training to deploy them to facilitate machine learning inference, model interoperability, and end-to-end model traceability. You’ll learn how to build ML pipelines, continuous integration and continuous delivery (CI/CD) pipelines, and monitor pipelines to systematically build, deploy, monitor, and govern ML solutions for businesses and industries. Finally, you’ll apply the knowledge you’ve gained to build real-world projects. By the end of this ML book, you'll have a 360-degree view of MLOps and be ready to implement MLOps in your organization.
Table of Contents (18 chapters)
1
Section 1: Framework for Building Machine Learning Models
7
Section 2: Deploying Machine Learning Models at Scale
13
Section 3: Monitoring Machine Learning Models in Production

Summary

In this chapter, we have learned about the ML solution development process, how to identify a suitable ML solution to a problem, and how to categorize operations to implement suitable MLOps. We got a glimpse into a generic implementation roadmap and saw some tips for procuring essentials such as tools, data, and infrastructure to implement your ML application. Lastly, we went through the business problem to be solved in the next chapter by implementing an MLOps workflow (discussed in Chapter 1, Fundamentals of MLOps Workflow) in which we'll get some hands-on experience in MLOps.

In the next chapter, we will go from theory to practical implementation. The chapter gets hands-on when we start with setting up MLOps tools on Azure and start coding to clean the data to address the business problem and get plenty of hands-on experience.