Book Image

Engineering MLOps

By : Emmanuel Raj
Book Image

Engineering MLOps

By: Emmanuel Raj

Overview of this book

Engineering MLps presents comprehensive insights into MLOps coupled with real-world examples in Azure to help you to write programs, train robust and scalable ML models, and build ML pipelines to train and deploy models securely in production. The book begins by familiarizing you with the MLOps workflow so you can start writing programs to train ML models. Then you’ll then move on to explore options for serializing and packaging ML models post-training to deploy them to facilitate machine learning inference, model interoperability, and end-to-end model traceability. You’ll learn how to build ML pipelines, continuous integration and continuous delivery (CI/CD) pipelines, and monitor pipelines to systematically build, deploy, monitor, and govern ML solutions for businesses and industries. Finally, you’ll apply the knowledge you’ve gained to build real-world projects. By the end of this ML book, you'll have a 360-degree view of MLOps and be ready to implement MLOps in your organization.
Table of Contents (18 chapters)
1
Section 1: Framework for Building Machine Learning Models
7
Section 2: Deploying Machine Learning Models at Scale
13
Section 3: Monitoring Machine Learning Models in Production

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "The preprocessed dataset is imported using the .get_by_name() function."

A block of code is set as follows:

uri = workspace.get_mlflow_tracking_uri( )
mlflow.set_tracking_uri(uri)

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

# Importing pre-processed dataset
dataset = Dataset.get_by_name (workspace, name='processed_weather_data_portofTurku')

Any command-line input or output is written as follows:

python3 test_inference.py

Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "Go to the Compute option and click the Create button to explore compute options available on the cloud."

Tips or important notes

Appear like this.