Book Image

The Deep Learning with Keras Workshop

By : Matthew Moocarme, Mahla Abdolahnejad, Ritesh Bhagwat
1 (1)
Book Image

The Deep Learning with Keras Workshop

1 (1)
By: Matthew Moocarme, Mahla Abdolahnejad, Ritesh Bhagwat

Overview of this book

New experiences can be intimidating, but not this one! This beginner’s guide to deep learning is here to help you explore deep learning from scratch with Keras, and be on your way to training your first ever neural networks. What sets Keras apart from other deep learning frameworks is its simplicity. With over two hundred thousand users, Keras has a stronger adoption in industry and the research community than any other deep learning framework. The Deep Learning with Keras Workshop starts by introducing you to the fundamental concepts of machine learning using the scikit-learn package. After learning how to perform the linear transformations that are necessary for building neural networks, you'll build your first neural network with the Keras library. As you advance, you'll learn how to build multi-layer neural networks and recognize when your model is underfitting or overfitting to the training data. With the help of practical exercises, you’ll learn to use cross-validation techniques to evaluate your models and then choose the optimal hyperparameters to fine-tune their performance. Finally, you’ll explore recurrent neural networks and learn how to train them to predict values in sequential data. By the end of this book, you'll have developed the skills you need to confidently train your own neural network models.
Table of Contents (11 chapters)
Preface

Introduction to Keras

Building ANNs involves creating layers of nodes. Each node can be thought of as a tensor of weights that are learned in the training process. Once the ANN has been fitted to the data, a prediction is made by multiplying the input data by the weight matrices layer by layer, applying any other linear transformation when needed, such as activation functions, until the final output layer is reached. The size of each weight tensor is determined by the size of the shape of the input nodes and the shape of the output nodes. For example, in a single-layer ANN, the size of our single hidden layer can be thought of as follows:

Figure 2.16: Solving the dimensions of the hidden layer of a single-layer ANN

If the input matrix of features has n rows, or observations, and m columns, or features, and we want our predicted target to have n rows (one for each observation) and one column (the predicted value), we can determine the size of our hidden layer...